
J
v3.11 HSM Conversion

Introduction . J-2
Conversion Process . J-2

Version 1.00 J – 1

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Introduction

This appendix is a checklist of the major points required to convert a
NetWare v3.11 server driver HSM to a NetWare v4.0 server driver
HSM. Only drivers that were developed with the v3.11 MSM tools can
be converted using these instructions.

The instructions here are in an overview form. Refer to the main
document for details on implementing the conversion steps.

Conversion Process

1. Create a DriverParameterBlock structure in OSDATA. (Chapter 3
describes the DriverParameterBlock.)

2. PUBLIC declaration changes.

Note: All current required PUBLIC and EXTRN declarations are provided

in the DRIVER.INC file.

Delete the following PUBLIC declarations. The DriverParameter-
Block now passes all required information to the MSM.

In the OSDATA segment:

public DriverAdapterDataSpace
public DriverAdapterDataSpaceTemplate

public DriverConfigTable

public DriverKeywordText
public DriverKeywordTextLen

public DriverProcessKeywordTab

In the OSCODE segment:

public DriverAES

public DriverCallBack
public DriverISR

public DriverPoll

public DriverPostInit
public DriverReset

public DriverShutdown
public DriverMulticastChange

public DriverSend

The only PUBLIC declarations required are:

public DriverInit

public DriverRemove (new)

J – 2 Version 1.00

Appendix J • v3.11 HSM Conversion

3. Delete the following variables from the OSDATA segment. These
are now part of the DriverParameterBlock structure.

DriverAdapterDataSpaceSize

DriverFirmwareBuffer

DriverFirmwareSize
DriverEndOfChainFlag

DriverNumKeywords
DriverStatisticsTable

4. EXTRN declaration changes.

Delete these EXTRN declarations. MSMMaxFrameHeaderSize is
now an equate (see steps 13 & 14). MSMHoldRcvEvent and
MSMFastRcvEvent have been replaced (see step 10).

extrn MSMMaxFrameHeaderSize

extrn MSMHoldRcvEvent
extrn MSMFastRcvEvent

Add these EXTRN declarations. These procedures are new. Refer
to Chapters 6 & 7 for information on these procedures.

extrn MSMAlloc:near

extrn MSMAllocPages:near

extrn MSMInitAlloc:near
extrn MSMFree:near

extrn MSMFreePages:near
extrn MSMInitFree:near

extrn MSMAllocateRCB:near

extrn MSMDriverRemove:near
extrn MSMParseCustomKeywords:near

extrn MSMReadEISAConfig:near
extrn MSMRegisterMLID:near

extrn MSMReturnNotificationECB:near

extrn MSMReadPhysicalMemory:near
extrn MSMWritePhysicalMemory:near

extrn <TSM>RegisterHSM:near
extrn <TSM>ProcessGetRCB:near

extrn <TSM>FastProcessGetRCB:near

The following macros are new for drivers supporting hub
management.

MSMReturnNotificationECB

MSMFastReturnNotificationECB

Version 1.00 J – 3

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

5. Configuration Table changes.

• The Configuration Table version is 1.12.

• The MSM sets MLIDNodeAddress to all FFh during the
<TSM>RegisterHSM. If MLIDNodeAddress is still all FFh after
returning from MSMRegisterHardwareOptions, the node address
was not overridden and the HSM must set the field to correct
node address.

If the driver is for hardware that passes non-canonical addresses
and the driver supports bit-swapping, the HSM must not use
MLIDNodeAddress after MSMRegisterMLID is called. In this
case the field may contain a canonical format node address.
Instead the HSM should use the node address in
MSMPhysNodeAddress.

• Place zeroes in the MLIDCardName, MLIDMajorVersion, and
MLIDMinorVersion fields; the MSM fills these fields using
information in the NLM header, derived from the linker
definition file.

• Note that the MLIDCardType field at 40h has been changed to
MLIDReserved0.

• Add the MLIDLookAheadSize field at 4Ch. MLIDReserved1 field
is now 8 bytes.

• Note that the MLIDChannelNumber has been added at A2h
taking up 2 bytes ofthe MLIDIOReserved field (which is now
only 6 bytes). Only multichannel adapters will use this field,
other drivers place a zero value in this field.

• Note the new bit assignments in the MLIDModeFlags and
MLIDFlags bytes.

6. Statistics Table changes.

• The Statistics Table version is 3.00

• Additional standard counters and media specific counters have
been added to the statistics table. Ensure that the HSM adds
these to the table and increments the appropriate mandatory
counters. See Chapter 3.

• If there are more then 32 standard and media specific counters,
a 2nd CounterMask is placed after the 32nd counter to indicate
the status of the remaining counters. See Chapter 3.

J – 4 Version 1.00

Appendix J • v3.11 HSM Conversion

7. The following procedures were added to the HSM driver
specification (complete descriptions are in Chapter 5):

DriverRemove (required)

DriverPromiscuousChange (recommended)
DriverEnableInterrupt (recommended)

DriverDisableInterrupt (recommended)

DriverStatisticsChange (optional)

DriverRxLookAheadChange (optional)
DriverManagement (optional)

8. Make the following adjustments in DriverInit:

• Preserve EBP, EBX, ESI, and EDI.

• Copy the stack pointer to the DriverStackPointer field in the
DriverParameterBlock, then call <TSM>RegisterHSM.

• MSMScheduleInterruptTimeCallBack has been shortened to
MSMScheduleIntTimeCallBack to accommodate NLMLINK and
NLMLINKP.

• A new routine, MSMReadEISAConfig, is available. Refer to the
routine’s description in Chapter 7 for details.

• Before returning successfully to the operating system, the HSM
must call MSMRegisterMLID (this registration was transparent
to the HSM previously).

• The routines listed below have the zero flag set on successful
returns. If the zero flag is clear, EAX points to the error
message string that the HSM must display prior to exiting.

MSMParseDriverParameters

MSMRegisterHardwareOptions
MSMSetHardwareInterrupt

MSMScheduleIntTimeCallBack

MSMScheduleAESCallBack
MSMEnablePolling

• If DriverInit fails to initialize the adapter hardware, it must call
MSMReturnDriverResources.

9. Delete DriverPostInit. If the driver contained any code in this
routine, execute that code after calling MSMRegisterMLID during
DriverInit.

Version 1.00 J – 5

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

10. Make all necessary changes to the routines below, which have been
changed due to the separation of the TSM module code from the
general MSM. Replace <TSM> with EtherTSM, TokenTSM,
RXNetTSM, PCN2LTSM, or FDDITSM.

MSMGetNextSend is now <TSM>GetNextSend

MSMGetRCB is now <TSM>GetRCB
MSMRcvComplete is now <TSM>RcvComplete

MSMFastRcvComplete is now <TSM>FastRcvComplete
MSMSendComplete is now <TSM>SendComplete

MSMFastSendComplete is now <TSM>FastSendComplete

MSMUpdateMulticast is now <TSM>UpdateMulticast

Two routines have been replaced:

MSMHoldRcvEvent is now <TSM>ProcessGetRCB

MSMFastRcvEvent is now <TSM>FastProcessGetRCB

The new routines process RCBs with completely filled data buffers
just like their predecessors. The new routines also return a new
RCB, unless no RCBs are available.

<TSM>ProcessGetRCB does not enable interrupts.
<TSM>FastProcessGetRCB may enable interrupts.

11. If the HSM uses shared RAM, observe the following constraints:

• The HSM must call MSMRegisterHardwareOptions before
accessing its shared RAM. On return from this routine, the
logical address for the shared RAM is in the MLIDLinear-

Memory0 and MLIDLinearMemory1 fields.

• If the HSM must access shared RAM to obtain information prior
to registering the hardware options with the operating system,
it may use MSMReadPhysicalMemory and MSMWritePhysical-

Memory.

• Bus-master logical-to-physical and physical-to-logical address
conversions may still be made using LogicalToPhysical and
PhysicalToLogical.

12. Realize that <TSM>GetRCB returns a pointer to a fragment
structure rather than a continuous buffer. The HSM must be able
to copy the received packet into fragment buffers.

13. The HSM should read MSMMaxFrameHeaderSize before each call
to <TSM>GetRCB because the value may change dynamically.
MSMMaxFrameHeaderSize is now an equate rather than a public
variable, and is equal to the value in MLIDLookAheadSize plus the
maximum media header size.

J – 6 Version 1.00

Appendix J • v3.11 HSM Conversion

14. All MSM equates are offsets from the adapter data space passed to
driver routines in EBP. The equates should be used as this example
for MSMTxFreeCount shows:

inc [ebp].MSMTxFreeCount

15. Note that MSMAllocateRCB is now a routine, not a macro.

16. If you can control interrupts at the adapter, you should implement
the DriverEnableInterrupt and DriverDisableInterrupt routines
described in Chapter 5. The MSM and TSM will call these routines
at the appropriate times. The MSMEnableHardwareInterrupt,
MSMDisableHardwareInterrupt, and MSMDoEndOfInterrupt

macros should only be used if interrupts can not be enabled and
disabled at the adapter. Also, the specification recommends that
you not use cli and sti instructions in your HSM code.

17. Be sure to look over the example Linker Definition File and Server
Driver Template provided with this document before creating a v4.x
HSM. Apppendix A illustrates a Linker definition file. Appendix I
contains a sample server driver HSM template. Include files are
also provided on the diskettes.

Version 1.00 J – 7

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

J – 8 Version 1.00

